纯电动汽车电机驱动系统三相线滤波磁环设计
电机驱动系统因大功率、高开关速度的工作特性使其成为纯电动汽车的主要电磁干扰源之一,本文从电机控制器-电机耦合系统的共模电压产生机理分析入手,指出控制器与电机之间的三相连接处为控制器-电机系统电磁兼容设计的难点。基于工程实践应用,设计了一种在电机控制器输出三相端添加共模磁环的方式来抑制系统的电磁干扰等级。通过测试验证该措施最高可以大大降低10dB的电磁干扰。
随着近年来能源安全、低碳经济的倡导,新能源汽车得到了蓬勃的发展。DC/DC、OBC、电机控制器-电机系统、动力蓄电池构成了电动汽车的主要高压架构,随着车载高压部件功率密度的逐步的提升、开关器件的开关速度不断加快使电动汽车相较于传统汽车的电磁兼容问题更为严酷。在控制器-电机系统中,高压电驱动模块通过三相线/三相铜排将干扰传导到电机,造成电机轴电压、轴电流及共模电流(漏电流)过大等负面问题,由此引发的电磁干扰会对其它零部件乃至整车的正常工作产生严重影响,一定要通过有效的滤波设计对电机控制器三相输出端的EMI进行抑制。对于降低电机驱动系统的电磁干扰已经有大量相关研究,主要有直流母线]、控制器输出三相线],但是直流母线输入滤波不能很好地解决电机控制器到电机的传导和辐射干扰,四桥臂逆变器和输出无源或有源滤波器在成本和工程方面还需进一步探索实施。本文基于工程实践,设计了一种在电机驱动系统三相输出端添加共模磁环的方案来抑制功率控制器耦合到电机的电磁干扰。
电机驱动系统中的主要干扰源是功率开关器件的开关动作,目前车用硅基IGBT的工作频率一般为10kH,同时由于电路中杂散电感等寄生参数的存在,IGBT在开通和关断 瞬间会产生较高的du/dt和di/dt,如图1(b)所示某款纯电动汽车用IGBT模块工作过程中产生的du/dt3840V/us,di/dt2145A/us,这势必将在电机驱动回路中产生频谱范围广阔的EMI骚扰,某款电机电控系统的原始状态AM频段辐射发射测试数据如图2所示,从图中能够准确的看出在3MHz处的骚扰尤为严重。
du/dt和di/dt引起的噪声在路径中传播产生的共模干扰是电机驱动系统EMI问题的难点所在[4]。如图3所示共模电流的主要流通路径有两条,一条是从IGBT逆变模块通过散热片与机壳之间的分布电容C1传导至参考地平面,另外一条是共模电流Icom1/Icom2/Icom1通过电机绕组之后,由电机定转子之间的寄生电容C2及机壳与参考地之间的分布电容C3构成流通回路。
受脉冲上升时间、电缆参数、感应电机等效阻抗等因素的影响,共模电流在从控制器流向电机绕组时会出现阻抗不匹配引起的反射,进而使电机端电压在电 平转换瞬间出现瞬时过冲现象(瞬时过电压),而且数值最大时能够达到逆变器相电压的2倍[5],有可能加剧电机驱动系统的EMI骚扰。本文基于实际工程运用,提出在电机控制器输出三相电端添加共模磁环的方式来抑制电机驱动系统的EMI发射水平。
为了通过阻断电机控制器与电机之间骚扰传播路径的方式来降低总系统AM频段的骚扰水平,设计了一种安装在逆变器三相输出端的共模磁环,磁环安装的地方如图4所示。该三相滤波磁环采用纳米晶材料,纳米晶具有高磁导率、高饱和磁通密度、损耗小、高居里温度、高工作磁感等优点,纳米晶材料的主要性能参数如表1所示。
该磁环采用厚度21m的纳米晶磁芯绕制成跑道型,经过高温退火以及横磁场处理而成,再将处理过的磁芯安装到PBT外壳中,灌封硅胶处理。该磁环安装在电机控制器三相输出的铜排端,结构方面具有体积小、占用高度小、安装便捷等优点;电气方面具有高电感量、高磁导率、高饱和磁通密度、铜损小、居里温度高等突出优点,完全满足QC/T 413-2002、GB/T 2423.5-1995震动冲击的标准。
由于电机为感性器件,原设计中电机控制器端未设置感性匹配,导致高频干扰由电机端进行反射,加大了线缆辐射干扰的严酷程度(如图2所示)。本文设计的三项滤波磁环等效为一个低通滤波器,与电机感性匹配,将干扰抑制在电机控制器内部,从而能够减小骚扰电流流经的电路环路面积,达到降低系统EMI骚扰水平的目的。如图6所示为加装纳米晶三相共模磁环后的AM频段辐射发射测试结果对比,图中绿色和蓝色曲线为未加磁环测得的辐射骚扰曲线,红色和黑色曲线为添加三相纳米晶滤波磁环后测得的辐射骚扰曲线。通过对比可知三相磁环的使用使辐射骚扰在400kHz以上有着非常明显的降低,最高可达10dB。
本文通过理论分析指出了电机驱动系统的共模电流流通路径,从抑制逆变器-电机的骚扰传播路径出发,设计了一种安装在电机控制器三相电输出端口的纳米晶材质磁环。该共模磁环的引入减小了共模电流的流通环路面积,从而有效的抑电机控制器在工作时产生的辐射发射的 强度,提高了 整车的EMC设计可靠性,为工程设计降低电机驱动系统整体辐射骚扰提供了思路。然而在实际应用中,三相磁环的设计应该要依据不同的电机驱动系统来设计不同的参数指标,具有普适性的共模磁环方案有待进一步研究。
[3]刘喆.电动汽车电机驱动系统的传导干扰建模与抑制方法研究[D].重庆:重庆大学, 2015.